Control Hierarchies and Tropical Algebras

Jörg Raisch1,2, Xavier David-Henriët1,2,3, Tom Brunsch1,3, Laurent Hardouin3

1Fachgebiet Regelungssysteme
Fakultät Elektrotechnik und Informatik, TU Berlin

2Fachgruppe System- und Regelungstheorie
Max-Planck-Institut für Dynamik komplexer technischer Systeme

3Laboratoire d’Ingénierie des Systèmes Automatisés
Université d’Angers
Outline

1 Motivation
2 A Behavioural View on Control Hierarchies
3 A Specific Scenario
4 A Few Essentials of Dioid (Tropical) Algebras
5 Specific Scenario Revisited
Outline

1. Motivation
2. A Behavioural View on Control Hierarchies
3. A Specific Scenario
4. A Few Essentials of Dioid (Tropical) Algebras
5. Specific Scenario Revisited
Motivation and Aims

Motivation

- Want to address large-scale/complex control problems
- Too many degrees of freedom for monolithic controller design
- Need to impose structure to reduce degrees of freedom
- Hierarchical control architecture particularly intuitive
- Heuristically designed hierarchical control ubiquitous in industry

Aims

- Want a formal framework that guarantees “proper interaction” of control layers to minimize trial and error during design
- Hierarchical structures need not be “rigid”; may be embedded into consensus-type distributed systems, with top-level functionality temporarily assigned to a node
Motivation

- Want to address large-scale/complex control problems
- Too many degrees of freedom for monolithic controller design
- Need to impose structure to reduce degrees of freedom
- Hierarchical control architecture particularly intuitive
- Heuristically designed hierarchical control ubiquitous in industry

Aims

- Want a formal framework that guarantees “proper interaction” of control layers to minimize trial and error during design
- Hierarchical structures need not be “rigid”; may be embedded into consensus-type distributed systems, with top-level functionality temporarily assigned to a node
Outline

1. Motivation

2. A Behavioural View on Control Hierarchies

3. A Specific Scenario

4. A Few Essentials of Dioid (Tropical) Algebras

5. Specific Scenario Revisited
Abstraction and Refinement

- Have been investigated in different scenarios
- Behavioural point of view allows conceptionally (and notationally) simple explanation of main ingredients

Dynamical system with input/output structure:

\[\Sigma = (T, U \times Y, \mathcal{B} \subseteq (U \times Y)^T) \]

Abstractions and refinements:

- \(\Sigma_a = (T, U \times Y, \mathcal{B}_a) \) is an abstraction of \(\Sigma \) if \(\mathcal{B} \subseteq \mathcal{B}_a \)
- \(\Sigma_r = (T, U \times Y, \mathcal{B}_r) \) is a refinement of \(\Sigma \) if \(\mathcal{B}_r \subseteq \mathcal{B} \)

Interpretation: abstraction (refinement) corresponds to adding (removing) uncertainty
Abstraction and Refinement

- Have been investigated in different scenarios
- Behavioural point of view allows conceptionally (and notationally) simple explanation of main ingredients

Dynamical system with input/output structure:

\[u(t) \in U \quad t \in T \quad y(t) \in Y \]

\[\Sigma = \left(T, U \times Y, B \subseteq (U \times Y)^T \right) \]

Abstractions and refinements:

- \[\Sigma_a = (T, U \times Y, B_a) \] is an abstraction of \(\Sigma \) if \(B \subseteq B_a \)
- \[\Sigma_r = (T, U \times Y, B_r) \] is a refinement of \(\Sigma \) if \(B_r \subseteq B \)

Interpretation: abstraction (refinement) corresponds to adding (removing) uncertainty
Abstraction and Refinement

- Have been investigated in different scenarios
- Behavioural point of view allows conceptionally (and notationally) simple explanation of main ingredients

Dynamical system with input/output structure:

\[
\begin{align*}
\Sigma = \left(T, U \times Y, \mathcal{B} \subseteq (U \times Y)^T \right)
\end{align*}
\]

Abstractions and refinements:

- \(\Sigma_a = (T, U \times Y, \mathcal{B}_a) \) is an **abstraction** of \(\Sigma \) if \(\mathcal{B} \subseteq \mathcal{B}_a \)
- \(\Sigma_r = (T, U \times Y, \mathcal{B}_r) \) is a **refinement** of \(\Sigma \) if \(\mathcal{B}_r \subseteq \mathcal{B} \)

Interpretation: abstraction (refinement) corresponds to adding (removing) uncertainty
Abstraction and Refinement

- Have been investigated in different scenarios
- Behavioural point of view allows conceptionally (and notationally) simple explanation of main ingredients

Dynamical system with input/output structure:

\[\Sigma = \left(T, U \times Y, \mathcal{B} \subseteq (U \times Y)^T \right) \]

Abstractions and refinements:

- \(\Sigma_a = (T, U \times Y, \mathcal{B}_a) \) is an abstraction of \(\Sigma \) if \(\mathcal{B} \subseteq \mathcal{B}_a \)
- \(\Sigma_r = (T, U \times Y, \mathcal{B}_r) \) is a refinement of \(\Sigma \) if \(\mathcal{B}_r \subseteq \mathcal{B} \)

Interpretation: abstraction (refinement) corresponds to adding (removing) uncertainty
Generic Two-Level Control Structure

\[\mathcal{B}^L_{sup} : \text{high-level supervisor} \]

\[u^H \]

\[y^H \]

\[\mathcal{B}_{im} : \text{aggregation & low-level control} \]

\[u^L \]

\[y^L \]

\[\mathcal{B}^L_p : \text{low-level plant model} \]

... can be extended to arbitrary number of control layers ...

- Low-level signal space: \(W_L = U_L \times Y_L \).
- Low-level process model: \(\mathcal{B}^L_p \) ... behaviour on \(W_L \).
- Inclusion-type specification: \(\mathcal{B}^L_{spec} \) ... defined on \(W_L \).
- High-level signal space: \(W_H = U_H \times Y_H \).
- High-level supervisor: \(\mathcal{B}^H_{sup} \) ... behaviour on \(W_H \).
- Low-level control: \(\mathcal{B}_{im} \) ... behaviour on \(W_H \times W_L \).
Motivation
A Behavioural View on Control Hierarchies
A Specific Scenario
Dioid Algebras
Specific Scenario Revisited

Generic Two-Level Control Structure

... can be extended to arbitrary number of control layers...

- Low-level signal space: $W_L = U_L \times Y_L$.
- Low-level process model: B^L_p ... behaviour on W_L.
- Inclusion-type specification: B^L_{spec} ... defined on W_L.
- High-level signal space: $W_H = U_H \times Y_H$.
- High-level supervisor: B^H_{sup} ... behaviour on W_H.
- Low-level control: B_{im} ... behaviour on $W_H \times W_L$.
Design Procedure

Define high-level signal space (assumed given in this talk).

Low-level control:
- Define (inclusion-type) specs $\mathcal{B}_{\text{spec}}^{\text{HL}}$ for lower control layer – intended relation between high-level and low-level signals.
- Design low-level control \mathcal{B}_{im} enforcing specs $\mathcal{B}_{\text{spec}}^{\text{HL}}$.

High-level control:
- Synthesise $\mathcal{B}_{\text{sup}}^{\text{H}}$ for $\mathcal{B}_{\text{p}}^{\text{H}} = \mathcal{B}_{\text{im}}[\mathcal{B}_{\text{p}}^{\text{L}}]$. Can be done abstraction-based!
 - Use high-level proj. $P^{\text{H}}(\mathcal{B}_{\text{spec}}^{\text{HL}})$ of $\mathcal{B}_{\text{spec}}^{\text{HL}}$ as abstraction of $\mathcal{B}_{\text{p}}^{\text{H}}$.
 - Define high-level spec. $\mathcal{B}_{\text{spec}}^{\text{H}}$ such that $\mathcal{B}_{\text{spec}}^{\text{HL}}[\mathcal{B}_{\text{spec}}^{\text{H}}] \subseteq \mathcal{B}_{\text{spec}}^{\text{L}}$.
 - Find high-level control $\mathcal{B}_{\text{sup}}^{\text{H}}$ such that $P^{\text{H}}(\mathcal{B}_{\text{spec}}^{\text{HL}}) \cap \mathcal{B}_{\text{sup}}^{\text{H}} \subseteq \mathcal{B}_{\text{spec}}^{\text{H}}$.

$$\mathcal{B}_{\text{p}} \cap \mathcal{B}_{\text{im}}[\mathcal{B}_{\text{sup}}^{\text{HL}}] \subseteq \mathcal{B}_{\text{sup}}^{\text{L}}$$
Design Procedure

Define high-level signal space (assumed given in this talk).

Low-level control:
- Define (inclusion-type) specs $\mathcal{B}_{\text{spec}}^{\text{HL}}$ for lower control layer – *intended* relation between high-level and low-level signals.
- Design low-level control \mathcal{B}_{im} enforcing specs $\mathcal{B}_{\text{spec}}^{\text{HL}}$.

High-level control:
Synthesise $\mathcal{B}_{\text{sup}}^H$ for $\mathcal{B}_{\text{p}}^H = \mathcal{B}_{\text{im}}[\mathcal{B}_{\text{p}}^L]$. Can be done abstraction-based!
- Use high-level proj. $P^H(\mathcal{B}_{\text{spec}}^{\text{HL}})$ of $\mathcal{B}_{\text{spec}}^{\text{HL}}$ as abstraction of \mathcal{B}_{p}^H.
- Define high-level spec. $\mathcal{B}_{\text{spec}}^H$ such that $\mathcal{B}_{\text{spec}}^{\text{HL}}[\mathcal{B}_{\text{spec}}^H] \subseteq \mathcal{B}_{\text{spec}}^L$.
- Find high-level control $\mathcal{B}_{\text{sup}}^H$ such that $P^H(\mathcal{B}_{\text{spec}}^{\text{HL}}) \cap \mathcal{B}_{\text{sup}}^H \subseteq \mathcal{B}_{\text{spec}}^H$.

$$\mathcal{B}_{\text{p}}^L \cap \mathcal{B}_{\text{im}}[\mathcal{B}_{\text{sup}}^H] \subseteq \mathcal{B}_{\text{spec}}^L$$
Design Procedure

Define high-level signal space (assumed given in this talk).

Low-level control:
- Define (inclusion-type) specs $\mathcal{B}^{\text{HL spec}}$ for lower control layer – *intended* relation between high-level and low-level signals.
- Design low-level control \mathcal{B}_{lm} enforcing specs $\mathcal{B}^{\text{HL spec}}$.

High-level control:
Synthesise \mathcal{B}^{sup} for $\mathcal{B}^{\text{H}} = \mathcal{B}_{\text{lm}}[\mathcal{B}^{\text{L}}]$. Can be done abstraction-based!
- Use high-level proj. $\mathcal{P}^{\text{H}}(\mathcal{B}^{\text{HL spec}})$ of $\mathcal{B}^{\text{HL spec}}$ as abstraction of \mathcal{B}^{H}.
- Define high-level spec. $\mathcal{B}^{\text{H spec}}$ such that $\mathcal{B}^{\text{HL spec}}[\mathcal{B}^{\text{H spec}}] \subseteq \mathcal{B}^{\text{L spec}}$.
- Find high-level control \mathcal{B}^{sup} such that $\mathcal{P}^{\text{H}}(\mathcal{B}^{\text{HL spec}}) \cap \mathcal{B}^{\text{H sup}} \subseteq \mathcal{B}^{\text{H spec}}$.

\[\mathcal{B}_p \cap \mathcal{B}_{\text{lm}}[\mathcal{B}^{\text{sup}}] \subseteq \mathcal{B}^{\text{spec}} \]
Where Can Things Go Wrong?

Low-level specification $\mathcal{B}_{\text{spec}}^{\text{HL}}$ too demanding:

- I.e., we cannot find appropriate low-level control.
- Need to relax low-level specifications and replace $\mathcal{B}_{\text{spec}}^{\text{HL}}$ by an abstraction $\mathcal{B}_{\text{spec},a}^{\text{HL}}$ such that $\mathcal{B}_{\text{spec}}^{\text{HL}} \subseteq \mathcal{B}_{\text{spec},a}^{\text{HL}}$.

Illustration: robot moving in a restricted area:

\[
\begin{align*}
\dot{x}_1(t) &= v(t) \cos \theta(t) \\
\dot{x}_2(t) &= v(t) \sin \theta(t) \\
\dot{\theta}(t) &= u_1(t) \\
\dot{v}(t) &= u_2(t)
\end{align*}
\]

$u^l = (u_1, u_2)$ low-level inputs

$y^l = (x_1, x_2)$ low-level outputs

$u^{\text{HI}} \in \{\text{go up, } \ldots \}$ high-level input

$y^{\text{HI}} = \text{quant}(x_1, x_2)$ high-level output.
Where Can Things Go Wrong?

Low-level specification $\mathcal{B}_{\text{spec}}^{\text{HL}}$ too demanding:

- I.e., we cannot find appropriate low-level control.
- Need to relax low-level specifications and replace $\mathcal{B}_{\text{spec}}^{\text{HL}}$ by an abstraction $\mathcal{B}_{\text{spec},a}^{\text{HL}}$ such that $\mathcal{B}_{\text{spec}}^{\text{HL}} \subseteq \mathcal{B}_{\text{spec},a}^{\text{HL}}$.

Illustration: robot moving in a restricted area:

\[
\begin{align*}
\dot{x}_1(t) &= v(t) \cos \theta(t) \\
\dot{x}_2(t) &= v(t) \sin \theta(t) \\
\dot{\theta}(t) &= u_1(t) \\
\dot{v}(t) &= u_2(t)
\end{align*}
\]

$u^L = (u_1, u_2)$ low-level inputs
$y^L = (x_1, x_2)$ low-level outputs
$u^H \in \{\text{go up, \ldots}\}$ high-level input
$y^H = \text{quant}(x_1, x_2)$ high-level output.
Where Can Things Go Wrong?

Low-level specification $\mathcal{B}_{\text{spec}}^{\text{HL}}$ too demanding:

- I.e., we cannot find appropriate low-level control.
- Need to relax low-level specifications and replace $\mathcal{B}_{\text{spec}}^{\text{HL}}$ by an abstraction $\mathcal{B}_{\text{spec},a}^{\text{HL}}$ such that $\mathcal{B}_{\text{spec}}^{\text{HL}} \subseteq \mathcal{B}_{\text{spec},a}^{\text{HL}}$.

Illustration: robot moving in a restricted area:

\[
\begin{align*}
\dot{x}_1(t) &= v(t) \cos \theta(t) \\
\dot{x}_2(t) &= v(t) \sin \theta(t) \\
\dot{\theta}(t) &= u_1(t) \\
\dot{v}(t) &= u_2(t)
\end{align*}
\]

- $u^L = (u_1, u_2)$ low-level inputs
- $y^L = (x_1, x_2)$ low-level outputs
- $u^H \in \{\text{go up, ...}\}$ high-level input
- $y^H = \text{quant}(x_1, x_2)$ high-level output.

Ex.: “go right” \Rightarrow is too demanding.
What Else Can Go Wrong?

Low-level specification $\mathcal{B}_{\text{spec}}^{\text{HL}}$ too coarse:

- $P^H(\mathcal{B}_{\text{spec}}^{\text{HL}})$ serves as abstraction of plant under low-level control.
- We cannot find appropriate high-level control.
- Need to refine low-level specifications by $\mathcal{B}_{\text{spec},r}^{\text{HL}} \subseteq \mathcal{B}_{\text{spec}}^{\text{HL}}$.

Example:

Recap:

- choice of low-level specs $\mathcal{B}_{\text{spec}}^{\text{HL}}$ depends on engineering intuition
- often involves trade-off between control layers
- key advantage: solution of low- & high-level control problems will provide a solution for the overall problem (guaranteed!)
What Else Can Go Wrong?

Low-level specification $\mathcal{B}_{\text{spec}}^{\text{HL}}$ too coarse:

- $P^H(\mathcal{B}_{\text{spec}}^{\text{HL}})$ serves as abstraction of plant under low-level control.
- We cannot find appropriate high-level control.
- Need to refine low-level specifications by $\mathcal{B}_{\text{spec},r}^{\text{HL}} \subseteq \mathcal{B}_{\text{spec}}^{\text{HL}}$.

Example: “go right” \sim

Recap:

- choice of low-level specs $\mathcal{B}_{\text{spec}}^{\text{HL}}$ depends on engineering intuition
- often involves trade-off between control layers
- key advantage: solution of low- & high-level control problems will provide a solution for the overall problem (guaranteed!)
Motivation
A Behavioural View on Control Hierarchies
A Specific Scenario
Dioid Algebras
Specific Scenario Revisited

What Else Can Go Wrong?

Low-level specification $\mathcal{B}_{\text{spec}}^{\text{HL}}$ too coarse:

- $\mathcal{P}^{\text{H}}(\mathcal{B}_{\text{spec}}^{\text{HL}})$ serves as abstraction of plant under low-level control.
- We cannot find appropriate high-level control.
- Need to refine low-level specifications by $\mathcal{B}_{\text{spec}, r}^{\text{HL}} \subseteq \mathcal{B}_{\text{spec}}^{\text{HL}}$.

Example: "go right" \rightsquigarrow

Recap:

- choice of low-level specs $\mathcal{B}_{\text{spec}}^{\text{HL}}$ depends on engineering intuition
- often involves trade-off between control layers
- key advantage: solution of low- & high-level control problems will provide a solution for the overall problem (guaranteed!)
Outline

1. Motivation
2. A Behavioural View on Control Hierarchies
3. A Specific Scenario
4. A Few Essentials of Dioid (Tropical) Algebras
5. Specific Scenario Revisited
Specific Scenario

- top layer decides on timing (not ordering!) of discrete events
- synthesis based on TEG abstraction of plant + low-level control
- TEG (Timed Event Graph) . . . specific timed Petri net

Example:

\[x_7(k) = \max\{x_4(k) + 1, x_2(k) + 6, x_2(k + 1), x_8(k - 1)\} \]

Time relations become linear in certain dioid (tropical) algebras . . .
Specific Scenario

- top layer decides on timing (not ordering!) of discrete events
- synthesis based on TEG abstraction of plant + low-level control
- TEG (Timed Event Graph) ... specific timed Petri net

Example:

\[x_7(k) = \max \{ x_4(k) + 1, x_2(k) + 6, x_2(k + 1), x_8(k - 1) \} \]

Time relations become linear in certain dioid (tropical) algebras ...
Specific Scenario

- top layer decides on timing (not ordering!) of discrete events
- synthesis based on TEG abstraction of plant + low-level control
- TEG (Timed Event Graph) ... specific timed Petri net

Example:

- want to compute earliest times of k-th occurrences of events
- doable, but time relations (non-benevolently) non-linear

$x_7(k) = \max\{x_4(k) + 1, x_2(k) + 6, x_2(k + 1), x_8(k - 1)\}$

time relations become linear in certain dioid (tropical) algebras ...
Specific Scenario

- top layer decides on timing (not ordering!) of discrete events
- synthesis based on TEG abstraction of plant + low-level control
- TEG (Timed Event Graph) ... specific timed Petri net

Example:

\[x_7(k) = \max\{ x_4(k) + 1, x_2(k) + 6, x_2(k + 1), x_8(k - 1) \} \]

time relations become linear in certain dioid (tropical) algebras ...
Outline

1. Motivation

2. A Behavioural View on Control Hierarchies

3. A Specific Scenario

4. A Few Essentials of Dioid (Tropical) Algebras

5. Specific Scenario Revisited
A dioid is an algebraic structure with two binary operations ⊕ ("addition") and ⊗ ("multiplication") defined on a set \(D \), such that

- ⊕ is associative, commutative & idempotent \((a ⊕ a = a \ \forall a ∈ D) \)
- ⊗ is associative and is distributive w.r.t. ⊕
- zero element \(ε \), unit element \(e \)
- \(ε \) is absorbing for ⊗, i.e., \(ε ⊗ a = a ⊗ e = ε \ \forall a ∈ D \)

Remarks

- a dioid is complete if it is closed for infinite sums and ⊗ distributes over infinite sums
- dioids are equipped with a natural order: \(a ⊕ b = a ⇔ a ≥ b \)
- addition and multiplication can be easily extended to matrices
A dioid is an algebraic structure with two binary operations \oplus ("addition") and \otimes ("multiplication") defined on a set \mathcal{D}, such that

- \oplus is associative, commutative & idempotent ($a \oplus a = a \ \forall a \in \mathcal{D}$)
- \otimes is associative and is distributive w.r.t. \oplus
- zero element ε, unit element e
- ε is absorbing for \otimes, i.e., $\varepsilon \otimes a = a \otimes \varepsilon = \varepsilon \ \forall a \in \mathcal{D}$

Remarks

- a dioid is complete if it is closed for infinite sums and \otimes distributes over infinite sums
- dioids are equipped with a natural order: $a \oplus b = a \iff a \succeq b$
- addition and multiplication can be easily extended to matrices
Example: The Max-Plus Algebra

Defined on $\bar{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty\} \cup \{+\infty\}$ resp. $\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$:

- addition: $a \oplus b := \max(a, b)$, zero element: $\varepsilon := -\infty$
- multiplication: $a \otimes b := a + b$, unit element: $e := 0$

Time relations for TEGs described by linear implicit difference eqns.

For our example

\[x_7(k) = 1 \otimes x_4(k) \oplus 6 \otimes x_2(k) \oplus x_2(k + 1) \oplus x_8(k - 1) \]
Example: The Max-Plus Algebra

Defined on \(\mathbb{Z} = \mathbb{Z} \cup \{ -\infty \} \cup \{ +\infty \} \text{ resp. } \mathbb{R} = \mathbb{R} \cup \{ -\infty \} \cup \{ +\infty \} : \)

- addition: \(a \oplus b := \max(a, b) \), zero element: \(\varepsilon := -\infty \)
- multiplication: \(a \otimes b := a + b \), unit element: \(e := 0 \)

Time relations for TEGs described by linear implicit difference eqns.

For our example

\[
x_7(k) = 1 \otimes x_4(k) \oplus 6 \otimes x_2(k) \oplus x_2(k + 1) \oplus x_8(k - 1)
\]
Example: The Max-Plus Algebra

Defined on $\mathbb{Z} = \mathbb{Z} \cup \{-\infty\} \cup \{+\infty\}$ resp. $\mathbb{R} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$:

- addition: $a \oplus b := \max(a, b)$, zero element: $\varepsilon := -\infty$
- multiplication: $a \otimes b := a + b$, unit element: $e := 0$

Time relations for TEGs described by linear implicit difference eqns.

For our example

$$x_7(k) = 1 \otimes x_4(k) \oplus 6 \otimes x_2(k) \oplus x_2(k + 1) \oplus x_8(k - 1)$$
The Dioid $\mathcal{M}_{in}^{ax}[\gamma, \delta]$

- $\mathcal{M}_{in}^{ax}[\gamma, \delta]$... a quotient dioid in the set of 2-dim. formal power series (in γ, δ), with Boolean coefficients and integer exponents

- interpretation of monomial $\gamma^k \delta^t$:
 - kth occurrence of event is at time t at the earliest
 - equivalently: at time t, event has occurred at most k times

\leadsto have to consider “south-east cones” (instead of points) in \mathbb{Z}^2

Example: $s = \gamma^1 \delta^1 \oplus \gamma^3 \delta^2 \oplus \gamma^4 \delta^5$
The Dioid $\mathcal{M}^\text{ax}_{\text{in}} [\gamma, \delta]$

- $\mathcal{M}^\text{ax}_{\text{in}} [\gamma, \delta]$... a quotient dioid in the set of 2-dim. formal power series (in γ, δ), with Boolean coefficients and integer exponents

- interpretation of monomial $\gamma^k\delta^t$:
 - kth occurrence of event is at time t at the earliest
 - equivalently: at time t, event has occurred at most k times

\leadsto have to consider “south-east cones” (instead of points) in \mathbb{Z}^2

Example: $s = \gamma^1\delta^1 \oplus \gamma^3\delta^2 \oplus \gamma^4\delta^5$

Properties:

- $\gamma^k\delta^t \oplus \gamma^l\delta^t = \gamma^\min(k,l)\delta^t$
- $\gamma^k\delta^t \oplus \gamma^k\delta^\tau = \gamma^k\delta^\max(t,\tau)$
- $\gamma^k\delta^t \otimes \gamma^l\delta^\tau = \gamma^{(k+l)}\delta^{(t+\tau)}$
- Zero element: $\varepsilon = \gamma^{+\infty}\delta^{-\infty}$
- Unit element: $\varepsilon = \gamma^0\delta^0$
- interpretation of partial order: inclusion in \mathbb{Z}^2
The Dioid $\mathbb{M}^\text{ax}_{\text{in}}[\gamma, \delta]$

- $\mathbb{M}^\text{ax}_{\text{in}}[\gamma, \delta]$... a quotient dioid in the set of 2-dim. formal power series (in γ, δ), with Boolean coefficients and integer exponents

- interpretation of monomial $\gamma^k \delta^t$:
 - kth occurrence of event is at time t at the earliest
 - equivalently: at time t, event has occurred at most k times

\[\rightsquigarrow\text{have to consider “south-east cones” (instead of points) in } \mathbb{Z}^2\]

Example: $s = \gamma^1 \delta^1 \oplus \gamma^3 \delta^2 \oplus \gamma^4 \delta^5$

Properties:

- $\gamma^k \delta^t \oplus \gamma^l \delta^t = \gamma^\text{min}(k,l) \delta^t$
- $\gamma^k \delta^t \oplus \gamma^k \delta^\tau = \gamma^k \delta^\text{max}(t,\tau)$
- $\gamma^k \delta^t \otimes \gamma^l \delta^\tau = \gamma^{(k+l)} \delta^{(t+\tau)}$
- Zero element: $\varepsilon = \gamma^{+\infty} \delta^{-\infty}$
- Unit element: $e = \gamma^0 \delta^0$
- interpretation of partial order: inclusion in \mathbb{Z}^2
The Dioid $\mathcal{M}_{in}^{ax} [\gamma, \delta]$

- $\mathcal{M}_{in}^{ax} [\gamma, \delta]$... a quotient dioid in the set of 2-dim. formal power series (in γ, δ), with Boolean coefficients and integer exponents
- interpretation of monomial $\gamma^k \delta^t$:
 - kth occurrence of event is at time t at the earliest
 - equivalently: at time t, event has occurred at most k times

∴ have to consider “south-east cones” (instead of points) in \mathbb{Z}^2

Example: $s = \gamma^1 \delta^1 \oplus \gamma^3 \delta^2 \oplus \gamma^4 \delta^5$

Properties:

- $\gamma^k \delta^t \oplus \gamma^l \delta^t = \gamma^{\min(k,l)} \delta^t$
- $\gamma^k \delta^t \oplus \gamma^k \delta^\tau = \gamma^k \delta^{\max(t,\tau)}$
- $\gamma^k \delta^t \otimes \gamma^l \delta^\tau = \gamma^{(k+l)} \delta^{(t+\tau)}$
- Zero element: $\varepsilon = \gamma^{+\infty} \delta^{-\infty}$
- Unit element: $e = \gamma^0 \delta^0$
- interpretation of partial order: inclusion in \mathbb{Z}^2
The Dioid $\mathcal{M}_{in}^{ax} [\gamma, \delta]$ ctd.

Time relations for TEGs become linear algebraic eqns. in $\mathcal{M}_{in}^{ax} [\gamma, \delta]$

For our example

$$x_7 = \delta^1 \gamma^0 x_4 \oplus (\delta^6 \gamma^0 \oplus \delta^0 \gamma^{-1}) x_2 \oplus \delta^0 \gamma^1 x_8$$

In general, with input & output trans. (triggered resp. seen externally):

$$x = Ax \oplus Bu$$

$$y = Cx$$
The Dioid $\mathcal{M}_{in}^{ax} [\gamma, \delta]$ ctd.

Time relations for TEGs become linear algebraic eqns. in $\mathcal{M}_{in}^{ax} [\gamma, \delta]$

For our example

$$x_7 = \delta^1 \gamma^0 x_4 \oplus (\delta^6 \gamma^0 \oplus \delta^0 \gamma^{-1}) x_2 \oplus \delta^0 \gamma^1 x_8$$

In general, with input & output trans. (triggered resp. seen externally):

$$x = Ax \oplus Bu$$

$$y = Cx$$
Control in the Dioid $\mathcal{M}_{\text{in}}^{\text{ax}} [\gamma, \delta]$

Plant:
- state model $x = Ax \oplus Bu$, $y = Cx$
- i/o rel. $y = CA^* Bu$, with $A^* := \bigoplus_{i \in \mathbb{N}_0} A^i$... Kleene star operator

Output feedback:
- $u = Ky \oplus v$
- $y \triangleleft y = CA^* BKy \oplus CA^* Bv$
- $y = (CA^* BK)^* CA^* B v$

Aim: just-in-time policy
- find greatest K s.t. $H_{\text{ref}} \succeq H_{\text{cl}}$, with
- H_{ref} a given reference model
- “greatest” and “\succeq” in the sense of natural order in $\mathcal{M}_{\text{in}}^{\text{ax}} [\gamma, \delta]$

Solution:
- desired feedback K can be obtained using “residuation theory”:
 - $K_{\text{opt}} = (CA^* B) \downarrow H_{\text{ref}} \uparrow (CA^* B)$
Control in the Dioid $\mathcal{M}_{in}^{ax}[\gamma, \delta]$

Plant:

- state model $x = Ax \oplus Bu, \ y = Cx$
- i/o rel. $y = CA^* Bu$, with $A^* := \bigoplus_{i \in \mathbb{N}_0} A^i$... Kleene star operator

Output feedback:

$u = Ky \oplus v$

$\Rightarrow y = CA^* BK y \oplus CA^* B v$

$y = (CA^* BK)^* CA^* B v$

Aim: just-in-time policy

find greatest K s.t. $H_{ref} \succeq H_{cl}$, with

- H_{ref} a given reference model
- “greatest” and “\succeq” in the sense of natural order in $\mathcal{M}_{in}^{ax}[\gamma, \delta]$

Solution:

desired feedback K can be obtained using “residuation theory”:

$$K_{opt} = (CA^* B) \Diamond H_{ref} \not\diamond (CA^* B)$$
Control in the Dioid $\mathcal{M}_{\text{in}}^{\text{ax}}[\gamma, \delta]$

Plant:
- state model $x = Ax \oplus Bu$, $y = Cx$
- i/o rel. $y = CA^* Bu$, with $A^* := \bigoplus_{i \in \mathbb{N}_0} A^i$... Kleene star operator

Output feedback:
- $u = Ky \oplus v$
- $\Rightarrow y = CA^* BKy \oplus CA^* Bv$
- $y = (CA^* BK)^* CA^* Bv$

Aim: just-in-time policy
- Find greatest K s.t. $H_{\text{ref}} \succeq H_{\text{cl}}$, with
 - H_{ref} a given reference model
 - “greatest” and “\succeq” in the sense of natural order in $\mathcal{M}_{\text{in}}^{\text{ax}}[\gamma, \delta]$

Solution:
- Desired feedback K can be obtained using “residuation theory”:
 $$K_{\text{opt}} = (CA^* B) \downarrow H_{\text{ref}} \uparrow (CA^* B)$$
Control in the Dioid $\mathcal{M}_{in}^{ax} \left[\gamma, \delta \right]$
Outline

1. Motivation
2. A Behavioural View on Control Hierarchies
3. A Specific Scenario
4. A Few Essentials of Dioid (Tropical) Algebras
5. Specific Scenario Revisited
Tradeoff Between Control Layers

- K_{opt} … greatest feedback K s.t.

$$ (H_{spec}K)^*H_{spec} \preceq G_{spec} $$

for a given overall spec. G_{spec}

- H_{spec} … low-level spec., i.e., abstraction for plant under low-level control

Result:

- Given overall specification G_{spec}
- Given low-level specifications H_{spec_1}, H_{spec_2}, with $H_{spec_1} \preceq H_{spec_2}$ (and some “natural” restrictions in place)
- Compute corresponding optimal feedback control K_{opt_1}, K_{opt_2}
- Can show that $K_{opt_1} \succeq K_{opt_2}$ (“stricter low-level specs allow for more relaxed high-level control”)
Motivation

A Behavioural View on Control Hierarchies

A Specific Scenario

Dioid Algebras

Specific Scenario Revisited

Tradeoff Between Control Layers

- \(K_{\text{opt}} \) \(\ldots \) greatest feedback \(K \) s.t.

 \[
 (H_{\text{spec}}K)^* H_{\text{spec}} \preceq G_{\text{spec}}
 \]

 for a given overall spec. \(G_{\text{spec}} \)

- \(H_{\text{spec}} \) \(\ldots \) low-level spec., i.e., abstraction for plant under low-level control

Result:

- Given overall specification \(G_{\text{spec}} \)
- Given low-level specifications \(H_{\text{spec}_1}, H_{\text{spec}_2} \), with \(H_{\text{spec}_1} \preceq H_{\text{spec}_2} \) (and some “natural” restrictions in place)
- Compute corresponding optimal feedback control \(K_{\text{opt}_1}, K_{\text{opt}_2} \)
- Can show that \(K_{\text{opt}_1} \succeq K_{\text{opt}_2} \) (“stricter low-level specs allow for more relaxed high-level control”)
Tradeoff Between Control Layers

- K_{opt} ... greatest feedback K s.t.

 $$(H_{\text{spec}}K)^*H_{\text{spec}} \preceq G_{\text{spec}}$$

 for a given overall spec. G_{spec}

- H_{spec} ... low-level spec., i.e., abstraction for plant under low-level control

Result:

- Given overall specification G_{spec}
- Given low-level specifications $H_{\text{spec}_1}, H_{\text{spec}_2}$, with $H_{\text{spec}_1} \preceq H_{\text{spec}_2}$ (and some “natural” restrictions in place)
- Compute corresponding optimal feedback control $K_{\text{opt}_1}, K_{\text{opt}_2}$
- Can show that $K_{\text{opt}_1} \succeq K_{\text{opt}_2}$ (“stricter low-level specs allow for more relaxed high-level control”)

\[\text{Diagram:} K_{\text{opt}} \rightarrow H_{\text{spec}} \rightarrow \text{Input/Output/Observation layers}\]
Interpreted trade-off between layers in a hierarchical control system from a behavioural point of view

Formally investigated this trade-off for a specific scenario where top layer is responsible for timing of discrete events

Resulting setup conveniently described in the dioid $\mathcal{M}^{ax}_{in} [\gamma, \delta]$

Verified that stricter low-level specs indeed allow for more relaxed high-level control
More Details

