Distributed local estimation in interconnected systems with application to localization

Ruggero Carli, A. Carron, L. Schenato, M. Todescato

Department of Information Engineering, University of Padova

Strasbourg, 24 June 2014
Robotic networks

What kind of systems?
Group of systems with *control, sensing, communication* and *computing*

Individual members
- **sense** its immediate environment
- **communicate** with others
- **process** the information gathered
- **take a local action** in response
Robotic networks

Embedded robotic systems and sensor networks for

- high-stress, rapid deployment – e.g., disaster recovery networks
- distributed environmental monitoring – e.g., portable chemical and biological sensor arrays detecting toxic pollutants
- autonomous sampling for biological applications – e.g., monitoring of species in risk, validation of climate and oceanographic models
- science imaging – e.g., multispaceship distributed interferometers flying in formation to enable imaging at microarcsecond resolution
Research challenges

How to coordinate individual agents into coherent whole?

Objective: systematic methodologies to design and analyze cooperative strategies to control multi-agent systems

Coordination tasks: exploration, map building, search and rescue, surveillance, distributed sensing, monitoring

Network localization: preliminary and fundamental problem

Optimization problem
Research challenges

Localization: to reconstruct / estimate the network structure

- **Relative distance measurements**
- **GPS measurements**
- **bearing measurements**

TODAY

- **Scalar positions**
- **Only relative distance measurements**
THE PROBLEM: To estimate a set of N scalar variables (x_1, \ldots, x_N)
THE PROBLEM: To estimate a set of N scalar variables (x_1, \ldots, x_N)

RELATIVE NOISY MEASUREMENTS

$z_{ij} = x_i - x_j + n_{ij}, \quad (i, j) \in \{1, \ldots, N\}$

n_{ij}: zero mean gaussian error

What kind of information?
The problem setup

THE PROBLEM: To estimate a set of N scalar variables (x_1, \ldots, x_N)

What kind of information?

RELATIVE NOISY MEASUREMENTS

$z_{ij} = x_i - x_j + n_{ij}, \quad (i, j) \in \{1, \ldots, N\}$

n_{ij}: zero mean gaussian error

We assume the available measurements are $M > N$
The problem setup

RELATIVE NOISY MEASUREMENTS

\[z_{ij} = x_i - x_j + n_{ij}, \quad (i,j) \in \{1, \ldots, N\} \]

\[n_{ij} : \text{zero mean gaussian error} \]
The problem setup

RELATIVE NOISY MEASUREMENTS

\[z_{ij} = x_i - x_j + n_{ij}, \quad (i, j) \in \{1, \ldots, N\} \]

\(n_{ij} \): zero mean gaussian error

MEASUREMENT GRAPH

\[G = (V, E) \]
The problem setup

RELATIVE NOISY MEASUREMENTS

\[z_{ij} = x_i - x_j + n_{ij}, \quad (i, j) \in \{1, \ldots, N\} \]

\[n_{ij} : \text{zero mean gaussian error} \]

MEASUREMENT GRAPH

\[G = (V, E) \]

\[V = \{1, \ldots, N\} \]
The problem setup

RELATIVE NOISY MEASUREMENTS

\[z_{ij} = x_i - x_j + n_{ij}, \quad (i, j) \in \{1, \ldots, N\} \]

\(n_{ij} : \) zero mean gaussian error

MEASUREMENT GRAPH

\[G = (V, E) \]

\[V = \{1, \ldots, N\} \]

\[(i, j) \in E \iff \text{there exists } z_{ij} \]
The problem: least-squares approach

\[\mathbb{E}[n_{ij}] = 0 \quad R_{ij} = \mathbb{E}[n_{ij}^2] \]

Functional cost: least-squares approach

\[F = \frac{1}{2} \sum_{(i,j) \in E} (x_i - x_j - z_{ij})^2 / R_{ij} \]
The problem: least-squares approach

\[\mathbb{E}[n_{ij}] = 0 \quad R_{ij} = \mathbb{E}[n_{ij}^2] \]

Functional cost: least-squares approach

\[F = \frac{1}{2} \sum_{(i,j) \in E} \frac{(x_i - x_j - z_{ij})^2}{R_{ij}} \]

Goal

To find a N-upla \((x_1, \cdots, x_N)\) minimizing the functional cost

\[F = \frac{1}{2} \sum_{(i,j) \in E} \frac{(x_i - x_j - z_{ij})^2}{R_{ij}} \]
The problem: least-squares approach

\[
x = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N \\
\]

\[
n, z \in \mathbb{R}^M \\
\]

\[
n = \begin{bmatrix} (n_{ij})_{(ij) \in E} \end{bmatrix} \\
\]

\[
z = \begin{bmatrix} (z_{ij})_{(ij) \in E} \end{bmatrix} \\
\]
The problem: least-squares approach

\[x = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N \]

\[n, z \in \mathbb{R}^M \]

\[n = \begin{bmatrix} (n_{ij})_{(ij)\in E} \end{bmatrix} \]

\[z = \begin{bmatrix} (z_{ij})_{(ij)\in E} \end{bmatrix} \]

Functional cost: least-squares approach

\[F(x, z) = \frac{1}{2} (z - Ax)^T R^{-1} (z - Ax) \]

\[A : incidence \ matrix \ of \ the \ graph \ G \]

\[R = \text{diag}\{R_{ij}\} \]
The problem: least-squares approach

\[
x = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N \\
\]

\[
n, z \in \mathbb{R}^M \\
n = \begin{bmatrix} (n_{ij})_{(ij)\in E} \end{bmatrix} \\
z = \begin{bmatrix} (z_{ij})_{(ij)\in E} \end{bmatrix}
\]

Functional cost: least-squares approach

\[
F(x, z) = \frac{1}{2} (z - Ax)^T R^{-1} (z - Ax)
\]

\[A: \text{incidence matrix of the graph } G\]

\[R = \text{diag}\{R_{ij}\}\]

Optimal solution?

\[
x_{opt} = (A^T R^{-1} A)^\dagger A^T R^{-1} z
\]
The problem: least-squares approach

\[x = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N \quad n, z \in \mathbb{R}^M \]

\[n = \begin{bmatrix} (n_{ij})_{(ij) \in E} \end{bmatrix} \]

\[z = \begin{bmatrix} (z_{ij})_{(ij) \in E} \end{bmatrix} \]

Functional cost: least-squares approach

\[F(x, z) = \frac{1}{2} (z - Ax)^T R^{-1} (z - Ax) \]

\[A : \text{incidence matrix of the graph } G \]

\[R = \text{diag}\{R_{ij}\} \]

Optimal solution?

\[x_{opt}^* = (A^T R^{-1} A)^\dagger A^T R^{-1} z \]

\[x_{opt} = (A^T R^{-1} A)^\dagger A^T R^{-1} z + \alpha \mathbf{1}, \quad \alpha \in \mathbb{R} \]
The problem: least-squares approach

\[x = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N \quad n, z \in \mathbb{R}^M \]
\[n = \begin{bmatrix} (n_{ij})_{(ij) \in E} \end{bmatrix} \]
\[z = \begin{bmatrix} (z_{ij})_{(ij) \in E} \end{bmatrix} \]

Functional cost: least-squares approach

\[F(x, z) = \frac{1}{2} (z - Ax)^T R^{-1} (z - Ax) \]

\(A : \text{incidence matrix of the graph } G \)

\(R = \text{diag}\{R_{ij}\} \)

Optimal solution?

\[x^*_\text{opt} = (A^T R^{-1} A)^\dagger A^T R^{-1} z \]
\[x_{\text{opt}} = (A^T R^{-1} A)^\dagger A^T R^{-1} z + \alpha \mathbf{1}, \quad \alpha \in \mathbb{R} \]
No centralized solutions!

\[z = \left[(z_{ij})_{(i,j) \in E} \right] \]

\[A, R \]

\[x_{opt}^* = (A^T R^{-1} A)^\dagger A^T R^{-1} z \]
Distributed and Asynchronous

- **Distributed** as opposed to **centralized**

Each node has computational, communication, memory capabilities

Local knowledge of the topology
Distributed and Asynchronous

- **Distributed** as opposed to **centralized**

 Each node has computational, communication, memory capabilities

 Local knowledge of the topology

- **Asynchronous** as opposed to **synchronous**

Ruggero Carli
Robust distributed localization
Distributed and Asynchronous

- **Distributed** as opposed to centralized

 Each node has computational, communication, memory capabilities

 Local knowledge of the topology

- **Asynchronous** as opposed to synchronous

Ruggero Carli

Robust distributed localization
Agents’ Assumptions

\[\text{Communication graph} \quad = \quad \text{Measurement graph} \]

\[N_i \] denotes the set of neighbors of node \(i \) in the graph \(G \)

\[N_i = \{ j \in V \quad \text{s. t.} \quad (i, j) \in E \} \]
Agents’ Assumptions

Communication graph = Measurement graph

N_i denotes the set of neighbors of node i in the graph G

$N_i = \{ j \in V \text{ s. t. } (i,j) \in E \}$

Node i keeps in memory

- \hat{x}_i estimate of x_i
Agents’ Assumptions

Communication graph $= \text{Measurement graph}$

N_i denotes the set of neighbors of node i in the graph G

$$N_i = \{ j \in V \; \text{s. t.} \; (i, j) \in E \}$$

Node i keeps in memory

- \hat{x}_i estimate of x_i
- $\hat{x}^{(i)}_j$ estimate of x_j, for all $j \in N$
Agents’ Assumptions

Communication graph = Measurement graph

\(N_i \) denotes the set of neighbors of node \(i \) in the graph \(G \)

\[N_i = \{ j \in V \text{ s. t. } (i, j) \in E \} \]

Node \(i \) keeps in memory

- \(\hat{x}_i \) estimate of \(x_i \)
- \(\hat{x}^{(i)}_j \) estimate of \(x_j \), for all \(j \in N \)
- \(z_{ij} \), for all \(j \in N \)
Gradient descent strategy

Gradient-based approach

\[F(x, z) = \frac{1}{2} \sum_{j \in N_i} \frac{(x_i - x_j - z_{ij})^2}{R_{ij}} + \text{terms without } x_i \]
Gradient descent strategy

Gradient-based approach

\[
F(x, z) = \frac{1}{2} \sum_{j \in N_i} \left(x_i - x_j - z_{ij} \right)^2 / R_{ij} + \text{terms without } x_i
\]

\[
F_i \left(x_i, \{x_j, z_{ij}\}_{j \in N_i} \right)
\]
Gradient descent strategy

Gradient-based approach

\[F(x, z) = \frac{1}{2} \sum_{j \in N_i} (x_i - x_j - z_{ij})^2 / R_{ij} \] + terms without \(x_i \)

\[F_i \left(x_i, \{ x_j, z_{ij} \}_{j \in N_i} \right) \rightarrow F_i \left(\hat{x}_i, \{ \hat{x}_j^{(i)}, z_{ij} \}_{j \in N_i} \right) \]

Ruggero Carli

Robust distributed localization
Gradient descent strategy

Gradient-based approach

\[F(x, z) = \frac{1}{2} \sum_{j \in N_i} \left(x_i - x_j - z_{ij} \right)^2 / R_{ij} \]

\[+ \] terms without \(x_i \)

\[F_i \left(x_i, \{x_j, z_{ij}\}_{j \in N_i} \right) \rightarrow F_i \left(\hat{x}_i, \{\hat{x}^{(i)}_j, z_{ij}\}_{j \in N_i} \right) \]

Agent \(i \) will update \(\hat{x}_i \) moving along the gradient of this function
Asynchronous broadcast

At each iteration there is only one node transmitting information

$t_1, t_2, t_3 ..., : time\ instants\ when\ the\ algorithm\ is\ performed$
The algorithm: three steps

Assume node i is activated at time instant t_n

t_1 t_2 t_3 t_n t_{n+1}
The algorithm: three steps

Assume node i is activated at time instant t_h

t_1 t_2 t_3 t_h t_{h+1}

- **First step**: node i updates its estimate \hat{x}_i as

$$\hat{x}_i \leftarrow \hat{x}_i - \alpha_i \sum_{j \in N_i} \frac{\hat{x}_i - \hat{x}_j^{(i)} - z_{ij}}{R_{ij}}$$

Ruggero Carli
Robust distributed localization
The algorithm: three steps

Assume node i is activated at time instant t_h

$t_1 \quad t_2 \quad t_3 \quad \quad t_h \quad \quad t_{h+1}$

- **First step**: node i updates its estimate \hat{x}_i as

$$\hat{x}_i \leftarrow \hat{x}_i - \alpha_i \sum_{j \in N_i} \frac{\hat{x}_i - \hat{x}_j^{(i)} - z_{ij}}{R_{ij}}$$

Gradient of...

$$F_i = \sum_{j \in N_i} \frac{(\hat{x}_i - \hat{x}_j^{(i)} - z_{ij})^2}{R_{ij}}$$
The algorithm: three steps

Assume node i is activated at time instant t_h

$\begin{align*}
\quad & t_1 & t_2 & t_3 & t_h & t_{h+1} \\
\end{align*}$

- **First step**: node i updates its estimate \hat{x}_i as

$$\hat{x}_i \leftarrow \hat{x}_i - \alpha_i \sum_{j \in N_i} \frac{\hat{x}_i - \hat{x}_j^{(i)} - z_{ij}}{R_{ij}}$$

α_i: *updating step size*

$F_i = \sum_{j \in N_i} \frac{(\hat{x}_i - \hat{x}_j^{(i)} - z_{ij})^2}{R_{ij}}$

Ruggero Carli
Robust distributed localization
The algorithm: three steps

- **Second step**: node i transmits the updated value \hat{x}_i to all its neighbors.
The algorithm: three steps

- **Second step**: node \(i \) transmits the updated value \(\hat{x}_i \) to all its neighbors.

- **Third step**: node \(j, j \in N_i \), updates \(\hat{x}_i^{(j)} \) as

 \[
 \hat{x}_i^{(j)} \leftarrow \hat{x}_i
 \]
Definitions: how frequently a node communicates?

Randomly persistent communicating network

There exists N-upla $\beta_1, ..., \beta_N$ with $\beta_i > 0$, $\sum \beta_i = 1$, such that

$$\mathbb{P}[\text{node } i \text{ is the node performing the } h-th \text{ iteration}] = \beta_i$$
Definitions: how frequently a node communicates?

Randomly persistent communicating network

There exists N-upla $\beta_1, ..., \beta_N$ with $\beta_i > 0$, $\sum \beta_i = 1$, such that

$$\mathbb{P}[\text{node } i \text{ is the node performing the } h-th \text{ iteration}] = \beta_i$$

Uniformly persistent communicating network

There exists positive integer number τ such that

$$\forall h, \text{ each node performs at least one iteration within the interval } (h, h + \tau)$$
Results

Let \(\hat{x}(t) = [\hat{x}_1(t), \ldots, \hat{x}_N(t)]^T \)

Theorem (Uniformly persistent communicating network)

Assume the weights \(\alpha_i \) satisfy

\[
0 < \alpha_i \leq \left(\sum_{j \in N_i} \frac{1}{R_{ij}} \right)^{-1}
\]

- the evolution \(h \to \hat{x}(h) \) asymptotically converges to an optimal solution
- the evolution \(h \to \hat{x}(h) \) is exponentially convergent
Results

Let \(\hat{x}(t) = [\hat{x}_1(t), ..., \hat{x}_N(t)]^T \)

Theorem (Randomly persistent communicating network)

Assume the weights \(\alpha_i \) satisfy

\[
0 < \alpha_i \leq \left(\sum_{j \in N_i} \frac{1}{R_{ij}} \right)^{-1}
\]

- the evolution \(h \rightarrow \hat{x}(h) \) converges almost surely to an optimal solution
- the evolution \(h \rightarrow \hat{x}(h) \) is exponentially convergent in mean – square sense
Remarks

- If \(\alpha_i = \left(\sum_{j \in N_i} \frac{1}{R_{ij}} \right)^{-1} \) then

\[
\hat{x}_i \leftarrow \text{argmin} \frac{1}{2} \sum_{j \in N_i} \left(\hat{x}_i - \hat{x}^{(i)}_j - z_{ij} \right)^2 \frac{1}{R_{ij}}
\]

At each iteration the optimal gradient step is performed!
At each iteration the optimal gradient step is performed!

\[
\hat{x}_i \leftarrow \text{argmin} \frac{1}{2} \sum_{j \in N_i} \left(\hat{x}_i - \hat{x}_j^{(i)} - z_{ij} \right)^2 \frac{R_{ij}}{R_{ij}}
\]

\[
\hat{x}_i \leftarrow p_{ii} \hat{x}_i + \sum_{j \in N_i} p_{ij} \hat{x}_j^{(i)} + \alpha_i \sum_{j \in N_i} \frac{z_{ij}}{R_{ij}}
\]
Remarks

- If $\alpha_i = \left(\sum_{j \in N_i} \frac{1}{R_{ij}} \right)^{-1}$ then

$$\hat{x}_i \leftarrow \text{argmin} \frac{1}{2} \sum_{j \in N_i} \frac{(\hat{x}_i - \hat{x}_j^{(i)} - z_{ij})^2}{R_{ij}}$$

At each iteration the optimal gradient step is performed!

- $\hat{x}_i \leftarrow p_{ii} \hat{x}_i + \sum_{j \in N_i} p_{ij} \hat{x}_j^{(i)} + \alpha_i \sum_{j \in N_i} \frac{z_{ij}}{R_{ij}} \quad \sum p_{ij} = 1$
Remarks

- If $\alpha_i = \left(\sum_{j \in N_i} \frac{1}{R_{ij}}\right)^{-1}$ then

$$\hat{x}_i \leftarrow \arg\min \frac{1}{2} \sum_{j \in N_i} \frac{(\hat{x}_i - \hat{x}_j^{(i)} - z_{ij})^2}{R_{ij}}$$

At each iteration the optimal gradient step is performed!

- $\hat{x}_i \leftarrow p_{ii} \hat{x}_i + \sum_{j \in N_i} p_{ij} \hat{x}_j^{(i)} + \alpha_i \sum_{j \in N_i} \frac{z_{ij}}{R_{ij}}$ \hspace{1cm} $\sum p_{ij} = 1$

Consensus step
Robustness….

How robust is the algorithm?

- Unreliable communications (packet losses)
- Communication delays
Assumptions: bounded packet losses

Assumption (bounded packet losses)

There exists a positive integer \(L \) such that

\[\text{the number of consecutive communication failures between neighboring nodes is smaller than } L \]

Loosely speaking there can be no more than \(L \) consecutive packet losses between any pair of nodes \(i, j \)
Assumptions: bounded delay

Assumption (bounded delay)

Assume that
- node i transmits its information at h-th iteration;
- communication link (i,j) does not fail;

Then node j receives \hat{x}_i not later than iteration $h+D$.

Ruggero Carli
Robust distributed localization
Results

Theorem (Uniformly persistent communicating network + bounded packet losses + bounded delays)

Assume the weights α_i satisfy

$$0 < \alpha_i < \left(\sum_{j \in N_i} \frac{1}{R_{ij}} \right)^{-1}$$

- the evolution $h \to \hat{x}(h)$ asymptotically converges to an optimal solution
- the evolution $h \to \hat{x}(h)$ is exponentially convergent
Results

Theorem (Uniformly persistent communicating network + bounded packet losses + bounded delays)

Assume the weights α_i satisfy

$$0 < \alpha_i < \left(\sum_{j \in N_i} \frac{1}{R_{ij}} \right)^{-1}$$

- the evolution $h \rightarrow \hat{x}(h)$ asymptotically converges to an optimal solution
- the evolution $h \rightarrow \hat{x}(h)$ is exponentially convergent

If $\alpha_i = \left(\sum_{j \in N_i} \frac{1}{R_{ij}} \right)^{-1}$ for some $i \Rightarrow$ COUNTEREXAMPLE of no Convergence
Theorem (Uniformly persistent communicating network + bounded packet losses + bounded delays)

Assume the weights α_i satisfy

$$0 < \alpha_i < \left(\sum_{j \in N_i} \frac{1}{R_{ij}} \right)^{-1}$$

- the evolution $h \rightarrow \hat{x}(h)$ asymptotically converges to an optimal solution
- the evolution $h \rightarrow \hat{x}(h)$ is exponentially convergent

If $\alpha_i = \left(\sum_{j \in N_i} \frac{1}{R_{ij}} \right)^{-1}$ for some i \Rightarrow COUNTEREXAMPLE of no Convergence
Numerical results

\[J = \log(\| \hat{x}(k) - x^* \|) \]
Numerical results

\[J = \log(||\hat{x}(k) - x^*||) \]
Research challenges

Localization: to reconstruct / estimate the network structure

- Relative distance measurements
- GPS measurements
- Bearing measurements

Nonlinear functional cost
Conclusions

Summary

1. distributed and asynchronous localization algorithm
2. convergence to optimal solution
3. robustness to bounded delays
4. robustness to bounded packet losses

On going work

1. 3D scenario
2. nonlinear functional cost
3. similar ideas to **state estimation** in smart grid
4. rate of convergence
The space of partitions

Definition (space of N-partitions)

$V_N^{(L)}$ is collections of N subsets of Q \(v = \{v_1, \ldots, v_N\} \) s. t.

1. \(v_i \neq \emptyset \) and \(v_1 \cup \cdots \cup v_N = Q \)
2. \(\text{interior}(v_i) \cap \text{interior}(v_j) \neq \emptyset \) if \(i \neq j \), and
3. \(\exists L \) such that \(v_i = \bigcup_{i=1}^{L} S_i \), \(S_i \) CONVEX and CLOSED
The space of partitions

Definition (space of N-partitions)

$V_N^{(L)}$ is collections of N subsets of Q
$v = \{v_1, \ldots, v_N\}$ s. t.
1. $v_i \neq \emptyset$ and $v_1 \cup \cdots \cup v_N = Q$
2. interior(v_i) \cap interior(v_j) $\neq \emptyset$ if $i \neq j$, and
3. $\exists L$ such that $v_i = \bigcup_{i=1}^{L} S_i$, S_i CONVEX and CLOSED

- How can we measure distances in the space of partitions?
- Meaning of convergence?